Sharon Selman
Hayes Inc.
Diane Hayes
Hayes Inc.; School of Medicine and Biomedical Sciences, State University of New York at Buffalo
Lawrence A. Perin
Hayes Inc.; Aviano Air Force Base, Italy
Winifred S. Hayes
Hayes Inc.; Johns Hopkins University School of Hygiene and Public Health

Sharon Selman

Hayes Inc.

Diane Hayes

Hayes Inc.; School of Medicine and Biomedical Sciences, State University of New York at Buffalo

Lawrence A. Perin

Hayes Inc.; Aviano Air Force Base, Italy

Winifred S. Hayes

Hayes Inc.; Johns Hopkins University School of Hygiene and Public Health


EXECUTIVE SUMMARY

Pneumococcal disease is a common cause of morbidity and mortality in the pediatric population. Pneumococcal infections, which account for most serious bacterial disease in infancy and early childhood, are a major cause of acute otitis media, sinusitis, pneumonia, bacterial meningitis, and bacteremia. Streptococcus pneumoniae is the causative agent in a large percentage of these infections, although other microorganisms also play a role. The recent emergence of drug-resistant strains has provided a strong incentive for preventing pneumococcal infections by vaccination. However, the capsular polysaccharide pneumococcal vaccines used to immunize adults are neither immunogenic nor protective in young children due to poor antibody responses. Therefore, research has focused on development of additional immunogenic pneumococcal vaccines to provide long-term immunity in children <2 years of age.

The most promising approach has been the development of a protein-polysaccharide conjugate vaccine for the seven serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F) that most commonly cause infections in childhood. An effective conjugate vaccine that protects against these serotypes has the potential to prevent 85 percent of bacteremia episodes, 83 percent of meningitis episodes, and 65 percent of otitis media cases in the U.S. among children younger than 6 years.

The Food and Drug Administration (FDA) recently approved the first protein-polysaccharide conjugate vaccine to prevent invasive pneumococcal diseases in infants and toddlers <2 years of age. This conjugated vaccine against pneumococcus uses the same technology as the successful vaccine against Haemophilus influenzae type b. It consists of an immunogenic but inert protein coupled covalently to the polysaccharide coat of the selected strains of pneumococci. The conjugated antigen induces a more powerful, T-cell-based immune response in infants, which is developed by the time they are 2 months of age.

Some important questions regarding this vaccine for children <2 years of age:

  • Is the vaccine safe?
  • Is it immunogenic?
  • Is it efficacious in preventing invasive pneumococcal disease and controlling otitis media?

Findings: Results of three randomized double-blind trials designed to evaluate the safety and immunogenicity of this vaccine in healthy children <2 years of age were reported within the last three years. The studies found that the vaccine is safe and highly immunogenic for all seven serotypes. The most recent study, involving over 37,000 young children, also evaluated the vaccine's efficacy, and reported that the vaccine is highly effective in preventing invasive disease and has had an impact on otitis media.

Conclusions: The heptavalent pneumococcal conjugate vaccine is safe and highly effective in preventing pneumococcal meningitis and bacteremic pneumonia in young children <2 years of age; it is less effective in preventing otitis media. Based on the results of three well-designed studies demonstrating the vaccine's safety, immunogenicity, and efficacy, the vaccine is safe and effective for active immunization of children <2 years of age against invasive disease caused by seven Streptococcus pneumoniae serotypes included in the vaccine. At this time, there is no clear medical consensus regarding its safety and efficacy for control of otitis media in children <2 years of age. This application has not been evaluated by the FDA. The pneumococcal conjugate vaccine should be considered experimental, and has not been shown to be safe or efficacious for Streptococcus pneumoniae disease other than that caused by the serotypes included in the vaccine and for invasive infection, such as bacteremia or meningitis, caused by other microorganisms.

Managed Care’s Top Ten Articles of 2016

There’s a lot more going on in health care than mergers (Aetna-Humana, Anthem-Cigna) creating huge players. Hundreds of insurers operate in 50 different states. Self-insured employers, ACA public exchanges, Medicare Advantage, and Medicaid managed care plans crowd an increasingly complex market.

Major health care players are determined to make health information exchanges (HIEs) work. The push toward value-based payment alone almost guarantees that HIEs will be tweaked, poked, prodded, and overhauled until they deliver on their promise. The goal: straight talk from and among tech systems.

They bring a different mindset. They’re willing to work in teams and focus on the sort of evidence-based medicine that can guide health care’s transformation into a system based on value. One question: How well will this new generation of data-driven MDs deal with patients?

The surge of new MS treatments have been for the relapsing-remitting form of the disease. There’s hope for sufferers of a different form of MS. By homing in on CD20-positive B cells, ocrelizumab is able to knock them out and other aberrant B cells circulating in the bloodstream.

A flood of tests have insurers ramping up prior authorization and utilization review. Information overload is a problem. As doctors struggle to keep up, health plans need to get ahead of the development of the technology in order to successfully manage genetic testing appropriately.

Having the data is one thing. Knowing how to use it is another. Applying its computational power to the data, a company called RowdMap puts providers into high-, medium-, and low-value buckets compared with peers in their markets, using specific benchmarks to show why outliers differ from the norm.
Competition among manufacturers, industry consolidation, and capitalization on me-too drugs are cranking up generic and branded drug prices. This increase has compelled PBMs, health plan sponsors, and retail pharmacies to find novel ways to turn a profit, often at the expense of the consumer.
The development of recombinant DNA and other technologies has added a new dimension to care. These medications have revolutionized the treatment of rheumatoid arthritis and many of the other 80 or so autoimmune diseases. But they can be budget busters and have a tricky side effect profile.

Shelley Slade
Vogel, Slade & Goldstein

Hub programs have emerged as a profitable new line of business in the sales and distribution side of the pharmaceutical industry that has got more than its fair share of wheeling and dealing. But they spell trouble if they spark collusion, threaten patients, or waste federal dollars.

More companies are self-insuring—and it’s not just large employers that are striking out on their own. The percentage of employers who fully self-insure increased by 44% in 1999 to 63% in 2015. Self-insurance may give employers more control over benefit packages, and stop-loss protects them against uncapped liability.