The CardioFit System consists of an implantable neurostimulator, a sensing lead, and a stimulation lead. According to the manufacturer, device implantation can be performed using local or general anesthesia. A physician implants the neurostimulator under the skin near the clavicle, similar to cardiac pacemaker implantation. The neurostimulator’s battery is expected to last about four years. The sensing lead, which is placed through a vein into the heart’s right ventricular chamber, monitors heart activity and can halt stimulation if needed (e.g., unsafe reduction in heart rate). The stimulation lead, which is placed around the right vagus nerve just below the carotid artery bifurcation, delivers low-current electrical impulses from the neurostimulator.

About three weeks after system implantation, a physician programs and activates the system wirelessly, slowing increasing stimulation current over three to four weeks. Target stimulation strength depends on a patient’s heart rate (a marker of PNS activity) and HF symptoms. The system is designed to halt stimulation if heart rate drops by more than 10 beats per minute, thereby reducing the risk of dramatic and potentially unsafe, drops in heart rate. According to the manufacturer, the CardioFit System is compatible with implanted cardioverter defibrillators (ICDs), suggesting that ICDs may be used in conjunction with vagus nerve stimulation in some patients, depending on clinical need.

Ratings and rationales of potential impact

Note: The following ratings and comments reflect the opinions and consensus of an expert panel convened by ECRI Institute to review information on this topic.

Anticipated utilization: 2 (20 percent to 40 percent of patients)

The panel noted that physicians treating HF, while often quick to adopt new cardiac technology, are “very data driven” and would want to see data from large randomized trials to ensure safety and efficacy before adopting vagus nerve stimulation. If such data became available, and if the device is approved for HF in the United States, the panel thought the treatment might be used in up to 40 percent of eligible patients. Access to care, patient preference about undergoing a surgical procedure, and possible risk of adverse events were thought to be factors that might limit adoption.

The panel expressed concern about adverse events and a strong desire to see additional adverse event data from a larger confirmatory trial (see “Potential Health Impact” comment below).

Anticipated time to early adoption: 1 (Early adoption in 5 or more years)

Although vagus nerve stimulation is commercially available in Europe, results from a 650-patient, ongoing, phase III trial that would support a premarket approval application to the U.S. Food and Drug Administration are not expected until 2017. Add to that the time typically required for the premarket approval application submission and FDA approval processes, the CardioFit System, if approved, would not likely become clinically available before 2018.

Potential health impact: 2 (Small)

The panel noted that limited data (n = 32; phase II safety and tolerability trial by De Ferrari, et al. 2010) suggest vagus nerve stimulation to treat chronic HF may offer small-to-modest improvement in some measures of exercise tolerance and heart function.

The study reported that 32 serious adverse events (SAEs), including 3 deaths, occurred in 13 patients over the 12-month study period.

Two events (pulmonary edema and revision surgery) were categorized as “certainly related” to the device/procedure; six others were categorized as “possibly related” to the device/procedure; 23 SAEs (including the three deaths) were categorized as “probably not related” to the device/procedure; and one was categorized as “certainly not related.”

The panel thought that additional data from a large randomized controlled trial (RCT) (preferably blinded) would be needed to determine efficacy and enable clinicians and patients to adequately weigh potential benefits and harms. An ongoing phase III RCT is expected to be completed in 2017.

Potential financial impact: 4 (Substantial)

The device cost is expected to be similar to that of ICDs, according to the developer. The use of vagus nerve stimulation would significantly increase short-term treatment costs for advanced chronic HF compared to continued medical therapy alone.

Costs would increase more sharply if the technology were used in patients with an existing ICD. Additional evidence is needed to evaluate whether the use of vagus nerve stimulation could alter long-term treatment costs by reducing the incidence of hospitalizations to treat HF exacerbations or lowering the need for medical therapy.

Potential process and infrastructure impact: 3 (Moderate)

Major cardiac centers that treat large numbers of patients with chronic HF would be the most likely to adopt vagus nerve stimulation to treat HF. Such centers have in place teams with experience implanting other types of electronic cardiac implants; however, staff at these facilities would require additional training to implement the technology for the new indication, especially related to proper lead placement around the vagus nerve.

Use of vagus nerve stimulation would represent another electronic device for physicians to integrate into patient management and monitoring. If the technology is widely adopted, reallocation of significant staff and resources to the new program might be needed because the procedure would represent an additional patient population needing routine device-related follow-up.

References

De Ferrari GM, Crijns HJ, Borggrefe M, Milasinovic G, Smid J, et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 2011 Apr;32(7):847–55. Epub 2010 Oct 28. PMID: 21030409.

INOVATE-HF. [internet]. Yehud (Israel): BioControl Medical; [accessed 2012 Feb 24]. [1 p]. Available: http://www.biocontrol-medical.com/patients.php?ID=8.

For inquiries about this report or membership in ECRI Institute’s Health Technology Assessment Information Service, send e-mail to htais@ecri.org.

The Health Technology Forecast is a proprietary database created by ECRI Institute through its Health Technology Assessment Information Service to present profiles of new and emerging health care technologies (devices, drugs, procedures, and information systems) in development. Each profile is designed to provide a snapshot of the current status, potential efficacy, and potential use of that technology. We use expert panel processes to review information, obtain perspectives, opinions, and ratings about the potential impact of interventions profiled. The information below is a summary of the full Forecast report.

This is an update of an article published in October 2012.

Managed Care’s Top Ten Articles of 2016

There’s a lot more going on in health care than mergers (Aetna-Humana, Anthem-Cigna) creating huge players. Hundreds of insurers operate in 50 different states. Self-insured employers, ACA public exchanges, Medicare Advantage, and Medicaid managed care plans crowd an increasingly complex market.

Major health care players are determined to make health information exchanges (HIEs) work. The push toward value-based payment alone almost guarantees that HIEs will be tweaked, poked, prodded, and overhauled until they deliver on their promise. The goal: straight talk from and among tech systems.

They bring a different mindset. They’re willing to work in teams and focus on the sort of evidence-based medicine that can guide health care’s transformation into a system based on value. One question: How well will this new generation of data-driven MDs deal with patients?

The surge of new MS treatments have been for the relapsing-remitting form of the disease. There’s hope for sufferers of a different form of MS. By homing in on CD20-positive B cells, ocrelizumab is able to knock them out and other aberrant B cells circulating in the bloodstream.

A flood of tests have insurers ramping up prior authorization and utilization review. Information overload is a problem. As doctors struggle to keep up, health plans need to get ahead of the development of the technology in order to successfully manage genetic testing appropriately.

Having the data is one thing. Knowing how to use it is another. Applying its computational power to the data, a company called RowdMap puts providers into high-, medium-, and low-value buckets compared with peers in their markets, using specific benchmarks to show why outliers differ from the norm.
Competition among manufacturers, industry consolidation, and capitalization on me-too drugs are cranking up generic and branded drug prices. This increase has compelled PBMs, health plan sponsors, and retail pharmacies to find novel ways to turn a profit, often at the expense of the consumer.
The development of recombinant DNA and other technologies has added a new dimension to care. These medications have revolutionized the treatment of rheumatoid arthritis and many of the other 80 or so autoimmune diseases. But they can be budget busters and have a tricky side effect profile.

Shelley Slade
Vogel, Slade & Goldstein

Hub programs have emerged as a profitable new line of business in the sales and distribution side of the pharmaceutical industry that has got more than its fair share of wheeling and dealing. But they spell trouble if they spark collusion, threaten patients, or waste federal dollars.

More companies are self-insuring—and it’s not just large employers that are striking out on their own. The percentage of employers who fully self-insure increased by 44% in 1999 to 63% in 2015. Self-insurance may give employers more control over benefit packages, and stop-loss protects them against uncapped liability.